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Facile preparation of difluoromethyl-
and monofluoromethyl-containing amides via Ritter reaction
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Abstract—Both secondary and tertiary difluoromethylated carbinols were found to readily react with acetonitrile under the catalysis
of concentrated sulfuric acid to give the corresponding difluoromethylated acetamides in good yields, which is remarkably more
efficient than the previously reported Ritter reactions with corresponding trifluoromethylated carbinols. Similarly, monofluoro-
methylated and (benzenesulfonyl)difluoromethylated carbinols have shown good reactivity in the Ritter reactions. Since the acet-
amides can be mildly deacetylated to give amines, the present methodology provides a convenient way for the synthesis of both
difluoromethyl- and monofluoromethyl-containing amines starting from simple carbonyl compounds.
� 2006 Elsevier Ltd. All rights reserved.
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During the past two decades, fluorine has been probably
the most highlighted halogen element (so-called ‘a small
atom with a big ego’). Today, around 20% of pharma-
ceuticals on the market and up to a quarter of those in
the development pipeline contain fluorine.1 The incorpo-
ration of fluorine atom(s) into organic molecules can
often impart profound and unexpected chemical,
biological, and physical properties. Such highly intrigu-
ing fluorine effects (also called ‘fluorine magic’) have
spurred organic chemists to develop efficient and conve-
nient methods for the synthesis of fluorine-containing
organic molecules.2 Recently, difluoromethyl (CF2H)
functionality has been realized to be an important group
to modulate the biological properties within bioactive
molecule, given the fact that the CF2H group has similar
high lipophilicity as trifluoromethyl (CF3) group, and
more importantly, the CF2H group often behaves as a
hydrogen donor through hydrogen bonding and is thus
highly useful in applications where a more lipophilic
hydrogen bond donor other than hydroxyl (OH) group
is required.2,3 In some cases, the difluoromethylated
compounds exhibit increased bioactivity over their tri-
fluoromethylated counterparts.4 Although several meth-
ods for the synthesis of difluoromethylated compounds
are available,5 the reports on the synthesis of difluoro-
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methylated amides 3 are scarce.5a,6 Previously, we devel-
oped the nucleophilic difluoromethylation methods for
the efficient synthesis of difluoromethyl alcohols and
amines from aldehydes, ketones, and aldimines.5a,b

Herein, we wish to report our continuing work in the
preparation of difluoromethyl amides 3 via Ritter reac-
tion with difluoromethylated carbinols 2 that can be
obtained through nucleophilic difluoromethylation of
carbonyl compounds 1 (Scheme 1).

Ritter reaction has long been known as a useful
approach for the synthesis of amides and amines (after
hydrolysis of amides) from alcohols or alkenes.7 How-
ever, although the Ritter reaction has been frequently
used in the nonfluorinated systems including the
Merck’s industrial-scale synthesis of anti-HIV drug Cri-
xivan (indinavir),8 its application for the preparation of
fluorinated amides or amines was not well explored. The
Ritter reactions between tertiary trifluoromethylcarbi-
nols 4 (Scheme 2, RF = CF3; R1, R2 = aryl, alkyl, etc.)
and acetonitrile under the catalysis of concentrated
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Table 1. Preparation of difluoromethylated amides 111,13
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sulfuric acid were reported by both Kaluszyner’s6c and
Prakash’s groups.9 However, a similar reaction could
not work effectively with secondary trifluoromethylcar-
binols (4, when RF = CF3, R1 or R2 = H).9,10 Obvi-
ously, here the strong electron-withdrawing CF3 group
significantly destabilizes the carbocation species 5,
and R1, R2 groups (R1, R2 = aryl, alkyl, and other
electron-donating groups, but not H) are essentially
important to make the reaction proceed (Scheme 2).

We envisioned that since the difluoromethyl (CF2H) and
monofluoromethyl (CFH2) groups have relatively weak-
er electron-withdrawing property, the Ritter reaction
with secondary difluoromethylcarbinols and mono-
fluoromethylcarbinols may proceed smoothly. Based
on these considerations, we firstly prepared a variety
of structurally diverse difluoromethyl-containing carbi-
nols 2a–i in satisfactory to excellent overall yields from
corresponding aldehydes and ketones by using the
previously reported procedure (Scheme 3).5c The Ritter
reactions between 2 and acetonitrile were typically
performed in the presence of concentrated sulfuric acid
as a catalyst at 70–80 �C (Table 1).11 As we expected,
a variety of secondary difluoromethylcarbinols 2a–g
could smoothly react with acetonitrile to give the corre-
sponding difluoromethylated acetamides 3a–g (Table 1,
entries 1–7). In most cases, the product yields were good
to excellent, which is remarkably more efficient than
the previously reported similar reactions with trifluo-
romethylcarbinols.6c,9 Amidation of difluorocarbinol
2c occurred via intramolecular rearrangement to give
3c as the major product (entry 3). The reactions with
the tertiary difluorocarbinols 2h and 2i gave the amides
R1 R2

O

R1 R2

CF2HHO

1

1) PhSO2CF2H, LHMDS, 
    THF-HMPA, - 78 oC

2) Na(Hg), CH3OH, Na2HPO4

2a: R1 = H, R2 = 4-methoxyphenyl  (93%)
2b: R1 = H, R2 = 2-naphthyl (78%)
2c: R1 = H, R2 = (E)-PhCH=CH- (69%)
2d: R1 = H, R2 = 4-(dimethylamino)phenyl (79%)
2e: R1 = H, R2 = 2-methoxyphenyl (86%)
2f:  R1 = H, R2 = 4-(tert-butyl)phenyl (84%)
2g: R1 = H, R2 = Ph (66%)
2h: R1 = CH3, R2 = Ph (64%)
2i:  R1 = Ph, R2 = Ph (62%)
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3h and 3i in good yields (entries 8 and 9). Monofluorom-
ethylcarbinol 9 was also prepared and its reaction with
acetonitrile under similar Ritter reaction conditions
gave the monofluoromethylated amide 10 in 94% yield
(Scheme 4). It is noteworthy to mention that in our
reactions (as shown in Table 1 and Scheme 4) we did
not observe the formation of any dehydrated product
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1,1-difluoroalkene or 1-fluoroalkene. Kaluszyner et al.
found that during the Ritter reactions with dichloro-
methylcarbinols and methylcarbinols, alkenes were ob-
tained as the major products presumably through an
acid-catalyzed dehydration mechanism.6c

We also tried the Ritter amidation with (benzenesulfon-
yl)difluoromethylated carbinol 11, and the amide prod-
uct 12 was successfully obtained in 87% yield (Scheme
5).

In order to demonstrate the possibility of further appli-
cation of these difluoromethylated and monofluo-
romethylated amides, we converted the difluoromethyl
amide 3f into its free amine form 13, by using a mild
deacetylation procedure reported by Prati and co-work-
ers recently12 (Scheme 6).
CF2H

NHAc (PhO)3P.Cl2, Py, i-BuOH

CH2Cl2, -30 oC~r.t.

CF2H

NH2

59%
3f 13

Scheme 6.
In summary, difluoromethylated, monofluoromethyl-
ated and (benzenesulfonyl)difluoromethylated amides
were successfully prepared with a simple Ritter reaction
procedure. Our results indicate that difluoromethyl,
monofluoromethyl, and (benzenesulfonyl)difluoro-
methyl groups are all relatively weaker electron-with-
drawing functionalities compared to the trifluoromethyl
group, which enabled us to efficiently prepare both
secondary and tertiary difluoromethylated (or monoflu-
oromethylated) amides in good yields. Since the difluo-
romethylated and monofluoromethylated amides can
be deacetylated under mild conditions, the present meth-
odology provides a useful approach for the preparation
of difluoromethyl- and monofluoromethyl-containing
amines.
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